Source-filter Based Clustering for Monaural Blind Source Separation
نویسندگان
چکیده
In monaural blind audio source separation scenarios, a signal mixture is usually separated into more signals than active sources. Therefore it is necessary to group the separated signals to the final source estimations. Traditionally grouping methods are supervised and thus need a learning step on appropriate training data. In contrast, we discuss unsupervised clustering of the separated channels by Mel frequency cepstrum coefficients (MFCC). We show that replacing the decorrelation step of the MFCC by the non-negative matrix factorization improves the separation quality significantly. The algorithms have been evaluated on a large test set consisting of melodies played with different instruments, vocals, speech, and noise.
منابع مشابه
Blind Source Separation of Monaural Musical Signals Using Complex Wavelets
In this paper, a new method of blind source separation of monaural signals is presented. It is based on similarity criteria between envelopes and frequency trajectories of the components of the signal, and on its onset and offset times. The main difference with previous works is that in this paper, the input signal has been filtered using a flexible complex band pass filter bank that is a discr...
متن کاملBeta Divergence for Clustering in Monaural Blind Source Separation
General purpose audio blind source separation algorithms have to deal with a large dynamic range for the different sources to be separated. In our algorithm the mixture is separated into single notes. These notes are clustered to construct the melodies played by the active sources. The non-negative matrix factorization (NMF) leads to good results in clustering the notes according to spectral fe...
متن کاملMonaural Ica of White Noise Mixtures Is Hard
Separation of monaural linear mixtures of ‘white’ source signals is fundamentally ill-posed. In some situations it is not possible to find the mixing coefficients for the full ‘blind’ problem. If the mixing coefficients are known, the structure of the source prior distribution determines the source reconstruction error. If the prior is strongly multi-modal source reconstruction is possible with...
متن کاملNote Clustering Based on 2-D Source-Filter Modeling for Underdetermined Blind Source Separation
For blind source separation, the non-negative matrix factorization extracts single notes out of a mixture. These notes can be clustered to form the melodies played by a single instrument. A current approach for clustering utilizes a source filter model to describe the envelope over the first dimension of the spectrogram: the frequency-axis. The novelty of this paper is to extend this approach b...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009